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SU~LRY 

An analysis is performed of the changes of the hydrodi- 
namic field which express theirself in a formation of a bire- 
fringent inlet stream on flowing of the elastic liquid in an 
orifice. It is shown that the deformation of pure shear (lon- 
gitudinal flow) is enfeebled and the deformation of simple 
shear (the flow with a transverse velocity gradient) is in- 
creased. Since for an elastic fluid the dissipation of energy 
in a longitudinal field is higher than in a transverse field, 
this conclusion must be considered as a corollary of Helm- 
holtz's theorem on the minimum of dissipation of energy on 
flow. 

INTRODUCTION 

The peculiarities of the convergent flow of polymeric 
solutions and melts are most pronounced on their squeezing 
through a short capillary or slit, a process characteristic 
for the to-day technology of spinning of polymeric fibers and 
films. Though the studies on the subject are very aboundant, 
our ideas about the convergent flow are still far from being 
complete (BIRD, 1977). The main feature of the convergent 
flow of an elastic liquid is an abrupt increase of the resis- 
tance to the flow on increasing overfall of pressure (SUL'- 
ZHENKO, 1967) ap. This phenomenon is reflected in the incre- 
ase of the product n p.t which has the dimensionality of vis- 
cosity (t being the time of flow of a given volume of the li- 
quid through the capillary). The increase of ~p.t together 
with the known fact of the increase of longitudinal viscosity 
of elastic liquids on increase of the velocity gradlent(LODGE 
1964) led to the conclusion that in a convergent stream domi- 
nates the longitudinal flow. A method was even recommended 
for measurement of the longitudinal viscosity with aid of 
short capillaries (COGSWELL, 1972). 

The increase of the resistance to the flow is accompani- 
ed by a formation of a birefringent inlet stream (see fig. l). 
The inundate inlet stream is surrounded by the so-called cir- 
eulation zone the velocity of motion of the liquid within 
which is insignificant. The angular v,~dth of the inlet stream 
2~ decreases on increasing ~ p, and its birefringence incre- 
ase. 
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Fig. 1. a).The movement of an elastic liquid on the inlet of 
the slit. The inundate inlet stream is shown with fat lines. 
b).Co-ordinate systems x, y, z and 1,m,z, The dashed lines 
show the asymptotes of the hyperbolae which are the boundari- 
es of the inlet stream. 

RESULTS AND DISCUSSION 

In this paper we shall show that though the very forma- 
tion of the inlet stream is due to the increase in the longi- 
tudinal viscosity on increasing velocity gradient, the flow 
field within the stream is not longitudinal but mainly trans- 
verse. Higher is the resistance to the flow closer is the 
flow field to a transverse one. 

Consider the motion in the inlet zone of a slit of a im- 
compressible elastic fluid with a simplest memory function 
(LODGE, 1964): 

1 ) exp (-t/ fl ) (I) 

t being the time and 91 the relaxation time. Such a liquid 
has a constant.viscosity. ~ in case of an established flow in 
a transverse fleld, and in case of a longitudinal flow its 
viscosity increases with increasing velocity gradient. We as- 
SLI~I e : 

1. The flow lines are cofocal hyperbolae whose asymptotes 
intersect on the z-axis of x, y, z coordinates (fig. l). 

2. The velocity of flow within the circulation zone 
equals, at first approximation, zero. 

3. The overfall of pressure on the boundary of the inlet 
stream in the direction normal to this boundary is also zero. 

The assumption (1) and (2) are based on our own observa- 
tions of the convergent flow of elastic liquids. The assump- 
tion (3) can be deduced from Bernulli's equation. 

The motion along the hyperbolic lines of flow is readily 
presented in co-ordinates of an elliptic cylinder (NADELUNG, 
1957) l, m, z which are connected with the coordinates x,y,z 

by the following relationS:x = a o ~ 1-m 2 . i ; /m/ ~ mma x 

z = z (2) 

a~ Y = ao'm ~ 1+12 ; 0 ~ 1 < c~ 

ao= ~ determining the position of the focus on the 

y-axis, 2a~ being the slit width, and mma x = since . 
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The coefficients of Lame for the chosen system of coor- 
dinates are determined from the relations: 

ao~1 +12-m 2 ao~1 +12-m 2 

Hi~ ' Hz=I (3) 

Using the equation of imcompressibility (LOYTZANSKIY, 1978) 

dlv ~ 8--~ (VIHmHz) + ~ (VmHzH1) + ~ (VzHIHm) (4) 

one can represent the modulus of the vector of the velocity 
of motion along cofocal hyperbolae in the form of series: 

/7/ = V 1 = Z Aim2i ; Vm = Vz = 0 (5) 

1+12-m 2 

VI, Vm, V z - being the components of ~ in coordinates 1,m,z. 

On flow of a Newtonian liquid in a gap between hyperbolic cy- 
linders only A~ and A I have nonzero values (BOYKO, 1975). 
In the case ofVan elaw liquid with a flow field limited by 
hyperbolic surfaces with ml = sin~ and m~ = -sin~ , 
also obtains a nonzero val~e. To determine~Ao , A I and A2A2we 
shall use the equation: 

Q = 2 JVlHmam (6) 
o 

which expresses the dependence of the expenditure per second, 
Q, on a unit length of the slit on the velocity, as well as 
the assumptions(2) and (3): 

V 1 = 0 at /m/ = mma x (7) 

~ = 0 at /m/ = mma x (8) am 

At low velocities and ~ p the viscosity of an elastic 
liquid is a weak function of the velocity gradient. Hence for 
an estimation of the pressure overfall near the boundary of 
the inlet stream one can use the solution for the convergent 
flow of an non-inertial Newtonian liquid (BOYKO, 1975): 

8 V 1 mV 1 '~m = 221 ( 1 + 1 2 ) 1 / 2  ( , ) (91 
ao(1+12_m2)3/2 8 m 1+12_m 2 

A jointed solution of eqs.(6), (7) and (8) gives a following 
expression for the flow field of an elastic fluid outside the 
slit: 

/~/ V 1 A (sin2~ - m2 ) 2 -4Q 
= = ; A = ao(2~+~cos 4 ~-0,75sin4~) 

~I +12-m 2 
( 10 )  

This leads in a simple way to equations connecting the velo- 
city of rotation ~ of an element of volume of the medium and 
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the quadratic invariant T 2 of the tensor of rates of deforma- 
tion with the expenditure per second and the angular width of 
the inlet stream 2~ : 

T2 = -~ll'~mm + ~m (11) 

/r~ 1 . 8 (VIHI) : 2.Am~ ..(sin2~ -m 2) 
6 0 :  ' 2 = ~ - - - -  ~m -- ao(l+12_m 2) 

(12) 
being different from zero components of the deformation 

rates tensor: 

1 HI . 0 VI -Am 1-~m2(sin2~ -m2)[2(1+12)-(sin2~+m2)~ 

Im=~ ~-~(-~l )= ,, ao(1 + 12 m2) 2 
(13) 

1 8Vl -A (sin2~ _m2)2 IVI+I 2/- 

To estimate the character of the flow field it is neces- 
sary to find the ratio ~/VT- o keeping in mind that ~/V~o=l 
corresponds to a flow with a~transvers velocity gradientS(de - 
formation of simple shear), and ~/VTo=O corresponds to a 
flow with a longitudinal velocity gradient (deformation of 
pure shear). 

The hydrodynamic field outside the slit is nonestabli- 
shed, which leads to the variability of ~/~rT- 2 for a moving 
element of volume of the medium. 

We shall estimate the character of the flow field by 
means of averaging ~/I~2 along a flow line. This is simpli- 
fied by introduction of reduced Cartesian coordinates: 

x _ y z X=----- Y - , Z = where Y attains the values +I and a~ ' a ~  a ~  
-1 on the edges of the slit. On the y-axis l=0, hence in cor- 
respondence with equations (2): 

m ; (--~-~) = since (15) Y = sin ~ at l=O l=O 

Let us calculate the average values of ~2 and T 2 isside 
a flow tube limited by two hyperbolic surfaces, the first 
intesecting the Y-axis at Y=Y, and the second at Y=Y+dY. 
The corresponding quantities are: 

dm ~ Hmdl 
<co> = = sin ~ co ~mdl (16) 

dY o 

<T2> = sin~ J T2HiHmdl (17) 
o 

Using eqs. (11) - (14) we obtain finally: 
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<O#2>= 4A2sin~ . mZ~sin2o( - m2j 2 arcsin m (18) 

A 2 
<T2>-- ~-- sin~(sin2o~-m2) 2 {(sin2o<+m2) 2 ~l+m 4 ~o(c~'+I)~ 

1_m ~ F---- 

~1 arcsin m ~1-m z arcsin m ~1-m 2 (19) 

"" ..... m 3 ' -  T ; ~2 = "m 3 '  + T 

The results of calculations based on (18) and (19)~for o6=30 ~ 
and 14,5 ~ are given~ in the table. The data for <a~> , <T2>, 
<co2> 1/2 /<T2>'/2 for a Newtonian liquid (oC=90 ~ pouring 

into the slit are also presented. In this case according to 

2Q I - m 2 (Bo 'mo,  1 9 7 5 ) :  /-,'t'/ = v I = ao,  " + 12 m2  

The data of the table show that a purely longitudinal flow 
occurs only at Y--O. The range of Y where the longitudinal 

flow is predominant (<~2>I/2 /<T >1/2 < 0,5 ) narrows 
with decreasing cL. The decrease ~fo~is followed by a decre- 
ase of the deformation rate at Y=O (from 0,135 and O,141 s 
oC --90 ~ and o~ =30 ~ down to 0,07 for ~ =14,5~ 

Simultaneously a very strong increase of the deformation 
rate occurs in the vicinity of Y--O,6 where, as it follows 

from the ratio (~6o2> 1/2 /~To>I/2), a flow with a transverse 
velocity gradient occurs (frSm O, 153 for oc =90 ~ up to 2,02 

foroC--14,5~ range of oc corresponding to <6o2>1/2/<T >I/2 
~I widens on decrease of oC.A sharp increase of the rat~ of 
simple shear deformation at decreasing oc explains the incre- 
ase of the product a p.t on increasing ap. Approximately 
equal values of <T~> in the vicinity of Y--O atod=90 o and 30 ~ 
explain why the an~ular width the streams observed in polyme- 
ric liquids never exceeds 60 ~ . 

Thus the occurence of s birefringent inlet s~ream and 
the decrease of its angular width can be considered as a pro- 
cess of Such a transform of the flow field where the deforma- 
tion of pure shear is enfeebled, and the deformation of simp- 
le shear is sharply enforced. A substantial difference of the 
hydrodynamic field inside the inlet stream from longitudinal 
one is one of the causes of the fact that in devices with a 
single orifice there occurs no effective uncoiling of macro- 
molecular chains before the entrance in the orifice. 
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TABLE The parameter of the hydrodynamic field 
of different Y. 

<W~ ( a ~ / Q )  2 <T2>  ( a ~ / Q )  2 < Q . ) 2 > 1 / 2 / < T 2 > l / 2  

Y 
90 ~ 30 ~ 14.,5 ~ 90 ~ 30 ~ 1 4 , 5  ~ 90 ~ 30 ~ 1 4 , 5  ~ 

I 2 3 ~ 5 6 7 8 9 10 

0 0 0 0 0,135 0,141 0,07 0 0 0 
0,1 0,004 0,066 0,14 0,135 O,192 0,20 0,17 0,59 0,83 
0,2 0,016 0,250 0,51 0,137 0,333 0,56 0,35 0,87 0,96 
0,3 0,037 0,507 1,04 0,136 0,532 1,05 0,52 0,58 1,00 
0,4 0,067 0,770 1,58 0,143 0,737 1,56 0,68 1,02 1,01 
0,5 0,106 0,962 1,97 0,147 0,889 1,93 0,85 1,04 1,01 
0,6 0,156 1,01 2,06 0,153 0,928 2,02 1,01 1,04 1,01 
0,7 0,220 0,882 1,79 0,163 0,811 1,75 1,16 1,04 1,01 
0,8 0,301 0,578 1,16 0,177 0,541 1,15 1,30 3,03 1,00 
0,9 0,408 0,205 0,41 0,202 0,198 0,41 1,42 1,02 1,00 
1,0 0,637 0 0 0,318 0 0 1,41 1,00 1,00 
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